

#### **FEATURES**

- ► Industrial Standard DIP-24 Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ▶ Ultra-high I/O Isolation 9000VDC with Reinforced Insulation, rate for 1000Vrms Working Voltage
- ► Common Mode Transient Immunity: 15KV/µS
- ► Qualified for IGBT and High Isolation Applications
- ▶ Operating Ambient Temp. Range -40°C to +97°C
- ► No Min. Load Requirement
- ► Overload/Voltage and Short Circuit Protection
- ▶ Designed-in Conducted EMI meets EN 55032 Class A & FCC Level A
- ► UL/cUL/IEC/EN 62368-1 (60950-1) Safety Approval & CE Marking













### PRODUCT OVERVIEW

The MINMAX MIE03-HI series is a new range of high performance 3.5W dc-dc converter within encapsulated DIP-24 package which specifically design for high isolation applications where reinforced insulation and high working voltage are required. There are 21 models available for input voltage of 5, 12, 24, 48VDC with wide 2:1 input range and tight output voltage. The I/O isolation is specified for 9000VDC with reinforced insulation, which rated for 1000Vrms working voltage. Further features include overload, short circuit protection, no min. load requirement, EMI conduction meets EN 55032 Class A, low I/O capacitance 40pF max. and operating ambient temp. range by -40°C to 97°C by high efficiency up to 87%. MIE03-HI series conform to common mode transient immunity testing by 15KV/µS and UL/cUL/IEC/EN 62368-1 (60950-1) safety approvals.

The MIE03-HI series offer a economical solution for demanding application in requesting a certified supplementary and high I/O isolation with reinforced insulation system to comply with 1000Vrms working voltage.

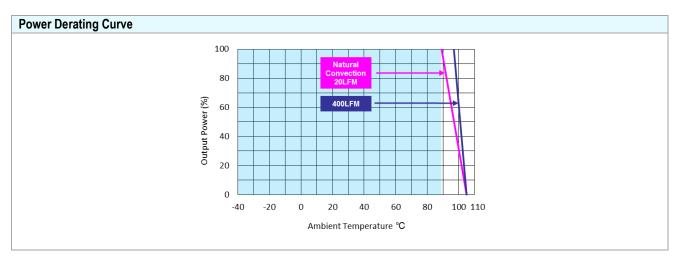
| <b>Model Selection</b> | Guide            |                   |                   |            |          |                 |                      |                      |
|------------------------|------------------|-------------------|-------------------|------------|----------|-----------------|----------------------|----------------------|
| Model<br>Number        | Input<br>Voltage | Output<br>Voltage | Output<br>Current | Input Cur  | rent     | Over<br>Voltage | Max. capacitive Load | Efficiency<br>(typ.) |
|                        | (Range)          |                   | Max.              | @Max. Load | @No Load | Protection      |                      | @Max. Load           |
|                        | VDC              | VDC               | mA                | mA(typ.)   | mA(typ.) | VDC             | μF                   | %                    |
| MIE03-05S05HI          |                  | 5                 | 700               | 854        |          | 6.2             | 750                  | 82                   |
| MIE03-05S058HI         |                  | 5.8               | 600               | 849        |          | 6.2             | 560                  | 82                   |
| MIE03-05S12HI          | 5                | 12                | 290               | 839        |          | 15              | 130                  | 83                   |
| MIE03-05S15HI          | (4.5 ~ 9)        | 15                | 235               | 839        |          | 18              | 100                  | 84                   |
| MIE03-05D12HI          |                  | ±12               | ±145              | 829        | 35       | ±15             | 75#                  | 84                   |
| MIE03-05D15HI          |                  | ±15               | ±115              | 821        | 35       | ±18             | 56#                  | 84                   |
| MIE03-12S05HI          |                  | 5                 | 700               | 356        |          | 6.2             | 750                  | 82                   |
| MIE03-12S12HI          | 12               | 12                | 290               | 337        | 8        | 15              | 130                  | 86                   |
| MIE03-12S15HI          | (9~18)           | 15                | 235               | 338        |          | 18              | 100                  | 87                   |
| MIE03-12D12HI          | (3 10)           | ±12               | ±145              | 333        | 13       | ±15             | 75#                  | 87                   |
| MIE03-12D15HI          |                  | ±15               | ±115              | 330        | 10       | ±18             | 56#                  | 87                   |
| MIE03-24S05HI          |                  | 5                 | 700               | 178        |          | 6.2             | 750                  | 82                   |
| MIE03-24S12HI          | 24               | 12                | 290               | 171        |          | 15              | 130                  | 85                   |
| MIE03-24S15HI          | (18 ~ 36)        | 15                | 235               | 169        | _ 6      | 18              | 100                  | 87                   |
| MIE03-24D12HI          | (10 30)          | ±12               | ±145              | 167        |          | ±15             | 75#                  | 87                   |
| MIE03-24D15HI          |                  | ±15               | ±115              | 167        |          | ±18             | 56#                  | 86                   |
| MIE03-48S05HI          |                  | 5                 | 700               | 89         |          | 6.2             | 750                  | 82                   |
| MIE03-48S12HI          | 48               | 12                | 290               | 85         | _        | 15              | 130                  | 85                   |
| MIE03-48S15HI          | (36 ~75)         | 15                | 235               | 86         | _ 4      | 18              | 100                  | 85                   |
| MIE03-48D12HI          | (30 73)          | ±12               | ±145              | 86         | _        | ±15             | 75#                  | 84                   |
| MIE03-48D15HI          |                  | ±15               | ±115              | 86         |          | ±18             | 56#                  | 84                   |

# For each output



| Input Specifications              |                                         |                                            |          |         |      |
|-----------------------------------|-----------------------------------------|--------------------------------------------|----------|---------|------|
| Parameter                         | Conditions / Model                      | Min.                                       | Тур.     | Max.    | Unit |
|                                   | 5V Input Models                         | -0.7                                       |          | 15      |      |
| Innut Curso Voltage (1 and may)   | 12V Input Models                        | -0.7                                       |          | 25      |      |
| Input Surge Voltage (1 sec. max.) | 24V Input Models                        | -0.7                                       |          | 50      |      |
|                                   | 48V Input Models                        | -0.7                                       |          | 100     |      |
|                                   | 5V Input Models                         |                                            |          | 4.5     |      |
| Chart I in Those should Maltana   | 12V Input Models                        |                                            |          | 9       | VDC  |
| Start-Up Threshold Voltage        | 24V Input Models                        |                                            |          | 18      | VDC  |
|                                   | 48V Input Models                        |                                            |          | 36      |      |
|                                   | 5V Input Models                         |                                            | 4        |         |      |
| Lladas Valtasa Chutdaus           | 12V Input Models                        |                                            | 8        |         |      |
| Under Voltage Shutdown            | 24V Input Models                        |                                            | 16       |         |      |
|                                   | 48V Input Models                        |                                            | 34       |         |      |
| Start Up Time (Power On)          | Nominal Vin and Constant Resistive Load | Nominal Vin and Constant Resistive Load 30 |          | ms      |      |
| Input Filter                      | All Models                              |                                            | Internal | Pi Type |      |

| Output Specifications               |                                            |                                                   |  |       |      |                   |
|-------------------------------------|--------------------------------------------|---------------------------------------------------|--|-------|------|-------------------|
| Parameter                           |                                            | Conditions                                        |  | Тур.  | Max. | Unit              |
| Output Voltage Setting Accuracy     |                                            |                                                   |  |       | ±1.0 | %Vnom.            |
| Output Voltage Balance              | Dual Ou                                    | tput, Balanced Loads                              |  | ±0.5  | ±2.0 | %                 |
| Line Regulation                     | Vin=Min                                    | . to Max. @Full Load                              |  |       | ±0.5 | %                 |
| Load Regulation                     | lo                                         | p=0% to 100%                                      |  |       | ±0.5 | %                 |
| Load Cross Regulation (Dual Output) | Asymmetrical                               | Asymmetrical Load 25%/100% Full Load              |  |       | ±5.0 | %                 |
| Minimum Load                        |                                            | No minimum Load Requirement                       |  |       |      |                   |
| Ripple & Noise                      | 0-20 MHz Bandwidth                         | 0-20 MHz Bandwidth   Measured with a 1µF/25V MLCC |  |       | 70   | mV <sub>P-P</sub> |
| Transient Recovery Time             | 250/ 1                                     | and Ctan Change                                   |  | 300   |      | μsec              |
| Transient Response Deviation        | 25% [                                      | 25% Load Step Change                              |  | ±3    | ±5   | %                 |
| Temperature Coefficient             |                                            |                                                   |  | ±0.01 |      | %/°C              |
| Over Load Protection                |                                            |                                                   |  | 150   |      | %                 |
| Short Circuit Protection            | Hiccup Mode 0.5Hz typ., Automatic Recovery |                                                   |  |       |      |                   |


| Isolation, Safety Standards    |                                                                           |      |      |      |        |
|--------------------------------|---------------------------------------------------------------------------|------|------|------|--------|
| Parameter                      | Conditions                                                                | Min. | Тур. | Max. | Unit   |
| I/O Isolation Voltage          | 60 Seconds Reinforced insulation, rated for 1000Vrms working voltage 5000 |      |      |      | VACrms |
|                                | Tested for 1 second                                                       | 9000 |      |      | VDC    |
| I/O Isolation Resistance       | 500 VDC                                                                   | 10   |      |      | GΩ     |
| I/O Isolation Capacitance      | 100KHz, 1V                                                                |      |      | 40   | pF     |
| Common Mode Transient Immunity |                                                                           | 15   |      |      | KV/μs  |
| Cofety Assessed                | UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1 (CB-report)   |      |      |      |        |
| Safety Approvals               | UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)   |      |      |      |        |

| General Specifications |                                   |           |      |      |       |  |
|------------------------|-----------------------------------|-----------|------|------|-------|--|
| Parameter              | Conditions                        | Min.      | Тур. | Max. | Unit  |  |
| Switching Frequency    |                                   |           | 330  |      | kHz   |  |
| MTBF(calculated)       | MIL-HDBK-217F@25°C, Ground Benign | 5,815,448 |      |      | Hours |  |



| Environmental Specifications                                   |                    |         |      |          |  |
|----------------------------------------------------------------|--------------------|---------|------|----------|--|
| Parameter                                                      | Conditions         | Min.    | Max. | Unit     |  |
| Operating Ambient Temperature Range (See Power Derating Curve) | Natural Convection | -40     | +97  | °C       |  |
| Case Temperature                                               |                    |         | +105 | °C       |  |
| Storage Temperature Range                                      |                    | -50     | +125 | °C       |  |
| Humidity (non condensing)                                      |                    |         | 95   | % rel. H |  |
| Cooling                                                        | Natural Conv       | vection |      |          |  |
| Lead Temperature (1.5mm from case for 10Sec.)                  |                    |         | 260  | °C       |  |

| EMC Specifications |                    |                                        |         |  |  |
|--------------------|--------------------|----------------------------------------|---------|--|--|
| Parameter          |                    | Standards & Level Performanc           |         |  |  |
| EMI                | Conduction         | EN 55032, FCC part 15                  | Class A |  |  |
|                    | EN 55024           |                                        |         |  |  |
| EMS                | ESD                | EN 61000-4-2 Air ± 8kV , Contact ± 6kV | Α       |  |  |
|                    | Radiated immunity  | EN 61000-4-3 10V/m                     | Α       |  |  |
|                    | Fast transient (5) | EN 61000-4-4 ±2kV                      | Α       |  |  |
|                    | Surge (5)          | EN 61000-4-5 ±2kV                      | Α       |  |  |
|                    | Conducted immunity | EN 61000-4-6 10Vrms                    | Α       |  |  |
|                    | PFMF               | EN 61000-4-8 3A/m                      | Α       |  |  |



#### Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 To meet EN61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required.

Suggested capacitor: 05XXX: CHEMI-CON KY Series 1000µF/100V // Diode (V10P45)

12XXX: CHEMI-CON KY Series 470µF/100V 24XXX: CHEMI-CON KY Series 330µF/100V 48XXX: CHEMI-CON KY Series 220µF/100V

- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 Specifications are subject to change without notice.





# **Package Specifications** Mechanical Dimensions 12.0 [0.47] Ø 0.60 [0.024] 。 1 15.22 [0.60] 20.3 [0.80] **Bottom View** 24 23 13 [0.08] 2.5 [0.10] 2.54 20.32 [0.80] 5.08 [0.20] 31.8 [1.25]

| Pin Connections |                           |        |  |  |
|-----------------|---------------------------|--------|--|--|
| Pin             | Single Output Dual Output |        |  |  |
| 1               | +Vin                      | +Vin   |  |  |
| 11              | No Pin                    | Common |  |  |
| 12              | -Vout                     | No Pin |  |  |
| 13              | +Vout                     | -Vout  |  |  |
| 15              | No Pin                    | +Vout  |  |  |
| 23              | -Vin                      | -Vin   |  |  |
| 24              | -Vin                      | -Vin   |  |  |

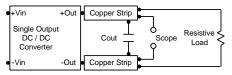
- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.5 (X.XX±0.02) X.XX±0.25 (X.XXX±0.01)
- ► Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

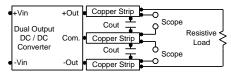
## **Physical Characteristics**

Case Size : 31.8x20.3x12.0mm (1.25x0.80x0.47 inches)

Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)

Pin Material : Tinned Copper


Weight : 15.5g




#### **Test Setup**

#### Peak-to-Peak Output Noise Measurement Test

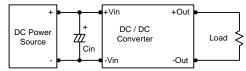
Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.





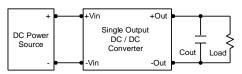
#### **Technical Notes**

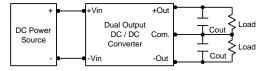
#### Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

#### Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


#### Input Source Impedance

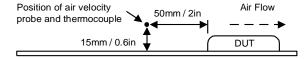

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR <  $1.0\Omega$  at 100 kHz) capacitor of a  $22\mu$ F for the 5V input devices and a  $10\mu$ F for the 12V input devices and a  $4.7\mu$ F for the 24V input devices and a  $2.2\mu$ F for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.



#### Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use  $4.7\mu$ F capacitors at the output.






## Maximum Capacitive Load

The MIE03-HI series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

#### Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



Minmax Technology Co., Ltd.